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Abstract The center of mass (CoM) of a humanoid robot
occupies a special place in its dynamics. As the location of its
effective total mass, and consequently, the point of resultant
action of gravity, the CoM is also the point where the robot’s
aggregate linear momentum and angular momentum are nat-
urally defined. The overarching purpose of this paper is to
refocus our attention to centroidal dynamics: the dynamics
of a humanoid robot projected at its CoM. In this paper we
specifically study the properties, structure and computation
schemes for the centroidal momentum matrix (CMM), which
projects the generalized velocities of a humanoid robot to
its spatial centroidal momentum. Through a transformation
diagram we graphically show the relationship between this
matrix and the well-known joint-space inertia matrix. We also
introduce the new concept of “average spatial velocity” of the
humanoid that encompasses both linear and angular com-
ponents and results in a novel decomposition of the kinetic
energy. Further, we develop a very efficient O(N ) algorithm,
expressed in a compact form using spatial notation, for com-
puting the CMM, centroidal momentum, centroidal inertia,
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and average spatial velocity. Finally, as a practical use of cen-
troidal dynamics we show that a momentum-based balance
controller that directly employs the CMM can significantly
reduce unnecessary trunk bending during balance mainte-
nance against external disturbance.

Keywords Centroidal momentum matrix · Angular
momentum · Robot dynamics algorithms · Average spatial
velocity · Humanoid balance controller · Momentum based
balance control

1 Motivation

The center of mass (CoM) of a humanoid robot is a uniquely
important point in its dynamics. First of all, it is the effective
location of the robot’s total mass, and therefore, the point
where its aggregate linear momentum is naturally defined. It
is also the point through which the resultant gravity force acts.
It should then come as no surprise that virtually all reduced
humanoid models and control algorithms contain the CoM
as an integral component.

In the well-known example of a freely flying multi-link
chain, the average behavior of the chain can be adequately
described in terms of its CoM. While the dynamics of indi-
vidual member links can be quite complex, the motion of
the CoM follows a point-mass trajectile profile which can be
easily described and communicated. Additionally, the rota-
tional motion of the aggregate chain obeys the conservation
of angular momentum about the CoM or, the centroidal angu-
lar momentum. For many applications, such reduced descrip-
tion is instrumental in the analysis and control of the system.

In a similar manner, surprisingly deep insight into the
dynamics of a humanoid robot can be obtained simply by
following the trajectory of its CoM, center of pressure (CoP),
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Fig. 1 Schematic depiction of some reduced one-legged models used
in human and humanoid balance and gait analysis. The models are
from top left: a rigid inverted pendulum, a telescopic inverted pendu-
lum, a cart-table model, a linear inverted pendulum model (LIPM),
a variable impedance inverted pendulum and a reaction mass pen-
dulum (RMP). Note that all models are based upon the locations of
the CoM, CoP and the “lean line” connecting them. Only the RMP
model contains an extended rigid-body mass and the centroidal angular
momentum

and the “lean line” connecting these two points. This has been
known for a long time and has been utilized in the study of
human motion. The study of humanoid dynamics has also
inherited this trend and a number of progressively complex
models, some of which are listed in Fig. 1, are currently used
for analysis and control.

The purpose of this paper is to explore centroidal dynam-
ics: the dynamics of a humanoid robot projected at its CoM.
We believe that a proper understanding of centroidal dynam-
ics and associated computational and algorithmic tools will
help create better robot controllers. Our position is schemat-
ically depicted in Fig. 2 and is motivated by a system level
view of the humanoid dynamics (Goswami and Kallem
2004). In this view, we consider all the external forces on
the humanoid system, which include the gravity force M g at
the humanoid CoM, as well as the interaction force/moment
between the humanoid and its environment. The interaction
force/moment includes the so-called ground reaction forces
(GRF) between the robot feet and the support surface and
all the task-related or other accidental forces applied on
the robot hand or other limbs. According to a fundamen-
tal principle of dynamics (Newton’s laws of motion) the
rate of change of linear and angular momentum at the CoM,
given by l̇G and k̇G , respectively, is equivalent to the resul-
tant effect of all the external forces (Sciavicco and Siciliano
2005).

Taking a fresh interest in the centroidal dynamics is not a
big departure from the existing literature, but rather a refo-

cusing of our attention. In a sense the CoM space, in which
the centroidal dynamics is described, is but an example of the
task space or the operational space (Khatib 1987), which have
been described for traditional manipulators and for floating-
base robots (Mistry and Righetti 2012). True, there are differ-
ences between the CoM space, the coordinate frame of which
is purely computational and often floats in space, and the
typical task space, for which the coordinate frame is rigidly
attached to the physical end effector of a manipulator. Yet,
the same concept of recasting the dynamics from its native
joint space to a different space applies in both cases.

Seen from another angle, the exploitation and control of
centroidal dynamics is already practiced when a researcher
migrates from the tedious joint-trajectory based ZMP control
of humanoids in favor of direct CoM control using simple
models, such as the LIPM model. The CoM control is directly
related to the linear momentum control, and the quantity of
linear momentum is meaningfully defined only at the CoM
of the robot. The next natural step in this direction seems to
be the control of angular momentum.

However, additional questions concerning centroidal
angular momentum have prevented its adoption in some pre-
vious control strategies. First, angular momentum has no
a-priori affinity with the CoM, and some have seen this as
a possible limit to its usefulness. While it appears that the
angular momentum expressed at the CoM should not be
privileged over any other point, some studies have shown
otherwise (Herr and Popovic 2008). Moreover, the angular
momentum is not integrable. That is, while the linear momen-
tum can be integrated to yield the CoM position, angular
momentum cannot be integrated to yield any meaningful ori-
entation of the humanoid as a function of its configuration.
We can numerically integrate angular momentum, but the
result would become dependent on joint trajectory history
and not simply on the configuration (Papadopoulos 1990).

Despite these challenges we are able to demonstrate in
this paper that a clear advantage exists in the concerted con-
trol of the linear and centroidal angular momentum of a
humanoid for whole body control including balance main-
tenance. In an example we show that such a controller is
able to reduce unnecessary trunk sway of a robot by almost
10◦ compared to a traditional joint control under the same
external perturbation.

A further point to note is that any control approach that
is based on a reduced model of the humanoid robot, such as
the ones using the centroidal dynamics, cannot immediately
provide full joint control of the robot. For example, a CoM-
based linear momentum control is directly concerned only
with the manipulation of the CoM motion. The actual joint
trajectories are subsequently obtained by imposing additional
constraints or tasks. This is to be viewed as the precise pur-
pose and a merit of such methods, which influence only a
small number of variables that are sufficient for the core task
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Fig. 2 Importance of centroidal dynamics of humanoid robot. From
left: a A humanoid is subjected to both internal joint force/torque as
well as external forces: gravity force, ground reaction force, and inter-
action force. b We treat the humanoid as a system and only consider

the external interaction. c The view in b is emphasized by only show-
ing the external interaction forces. d The resultant effect of the all the
external interaction forces in c is a force and a moment, or equivalently,
the linear and angular momentum rate changes, l̇G and k̇G , at the CoM

(e.g., balance maintenance), leaving the rest of the degrees
of freedom free to accomplish additional tasks.

2 Contribution and related work

In this paper we particularly study the properties, struc-
ture and computation schemes for the centroidal momentum
matrix (CMM) (Orin and Goswami 2008), which projects the
generalized velocities of a humanoid robot to its spatial cen-
troidal momentum. Our interest in the study of the CMM is
motivated by our desire to exploit the centroidal momentum
as a means to control the robot’s postural balance.

The importance of angular momentum in humanoid walk-
ing was reported by Sano and Furusho (1990) as early as
1990. However, it was much later before its importance
for balance maintenance for humans and humanoid robots
started to be seriously explored (Nishiwaki et al. 2002;
Goswami and Kallem 2004; Naksuk et al. 2004, 2005;
Komura et al. 2005; Abdallah and Goswami 2005; Popovic
et al. 2004, 2005). Sano and Furusho (1990) and Mitobe et
al. (2004) showed that it is possible to generate the desired
angular momentum by controlling the ankle torque. Kajita
et al. (2003) included angular momentum criteria into the
whole body control framework for balance maintenance.

The field of computer animation has been employing
angular momentum for realistic dynamic movements for
some time as described in a recent survey paper Zordan
(2010). In an important recent work Macchietto et al. (2009)
define balance control objectives through desired momen-
tum rate change. They employ the CMM to compute joint
accelerations, followed by computing necessary joint torques
using inverse dynamics. Hofmann et al. (2009) presented
a method that controls the CoM by modulating angular
momentum under large external perturbations. Ugurlu and
Kawamura have studied bipedal walking that specifically
controls the centroidal angular momentum (Ugurlu and

Kawamura 2010). Relatively recently we have seen a com-
prehensive study of angular momentum during human gait
(Herr and Popovic 2008).

This paper also addresses the important concept of “aver-
age” angular velocity of a humanoid. Although the aver-
age linear velocity of a multibody system can be uniquely
described in terms of the velocity of its CoM, no such funda-
mental description exists regarding its angular velocity. Fol-
lowing the approach of Essén (1993) for a system of particles
we derive a principled definition of average spatial veloc-
ity that results in a novel decomposition of kinetic energy.
This definition generalizes the concept of linear velocity and
encompasses both linear and angular components.

Another contribution of this paper is the transformation
diagram, which we use to pictorially represent the relations
between a number of important vectors and transformation
matrices in a unified scheme. Finally, we also present an effi-
cient O(N ) algorithm for computing the CMM, centroidal
momentum, centroidal inertia, and average spatial velocity
where N is the number of links in the humanoid.

Although we have not stated so explicitly, our approach
implicitly assumes a robot model which possesses an
extended mass with non-zero inertia. The search for an appro-
priate reduced model must factor in both the utility of the
adopted model and its complexity. Depending on the appli-
cation domain of a model and the physical effects the model
is intended to capture, there is more than one way to improve
the simple “point mass” inverted pendulum, each with its
unique pros and cons. We have chosen to incorporate ele-
ments to model a variable inertia matrix at the CoM. This is
primarily due to our interest in exploring and controlling cen-
troidal inertia and centroidal angular momentum. Another
approach may put priority on the nonholonomic factors and
the coupling effects, and may include an eccentric inertia—a
dangling link—as proposed in Wieber (2005, 2008). There
would presumably be yet other ways to extend the simple
model, and perhaps combinations of different approaches.
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The organization of this paper is as follows. First, the
velocity and momentum equations for a humanoid robot
are derived using spatial notation. This is followed by a
description of the structure and properties of the CMM.
Next, we introduce the novel concept of “average” spatial
(centroidal) velocity of a humanoid, which is a generaliza-
tion of the CoM velocity. Then we introduce the transfor-
mation diagram, which is a pictorial representation of the
inter-relationships among motion and momentum variables.
In the two subsequent sections we present efficient computa-
tional algorithms for several of the quantities that appear in
this paper, and also show a scheme to address the constraints
resulting from single and double support of the humanoid. We
finally demonstrate the utility of centroidal dynamics through
a momentum-based balance controller that explicitly uses the
CMM. We show that in comparison with the traditional joint
control, the centroidal dynamics based control can reduce
unnecessary trunk roll of the robot by as much as 10◦ under
the same external perturbation.

3 Humanoid robot model

In order to develop the dynamic model of a humanoid robot,
the approach taken in Featherstone and Orin (2008) for rigid-
body systems will be used. Spatial notation (Featherstone
2008; Featherstone and Orin 2008) is a concise vector nota-
tion for describing rigid-body velocity, acceleration, inertia,
etc., using 6D vectors and tensors, and is an integral part
of the approach. While spatial notation is particularly con-
venient here, note that the same theoretical framework can
be developed for centroidal dynamics in more traditional 3D
notation with no change in the central contributions of the
paper.

A humanoid can be modeled as a set of N + 1 links inter-
connected by N joints, of up to six degrees of freedom each,
forming a tree-structure topology. The motion of the links is
referenced to a fixed base (inertial frame) which is labeled 0
while the links are labeled from 1 through N . Numbering of
the links may be done in any manner such that link i’s prede-
cessor toward the root (link 0), indicated by p(i), is always
less than i . Joints in the tree are numbered such that joint i
connects link i to link p(i). A coordinate frame is attached
to each link to provide a reference for quantities associated
with the link.

The relationship between connected links in the tree struc-
ture is described using the general joint model of Roberson
and Schwertassek (1988). An ni × 1 vector q̇i relates the
velocity of link i to the velocity of its predecessor, link p(i),
where ni is the number of degrees of freedom at the joint
connecting the two links. The free modes of the joint are
represented by the 6 × ni matrix �i , such that the spatial
velocity of link i is given as follows:

vi =
[

ωi

vi

]
= iXp(i) vp(i) + �i q̇i , (1)

where ωi and vi are the angular and linear velocities of link
i , respectively, as referenced to the link coordinate frame.
iXp(i) is a 6 × 6 spatial transform which transforms spatial
motion vectors from p(i) to i coordinates. The matrix �i

depends on the type of joint (Roberson and Schwertassek
1988; Featherstone and Orin 2008). It has full column rank, as
does the orthogonal matrix �c

i representing the constrained
modes of the joint, such that

[
�i �c

i

]
is a basis of R

6 and is
invertible.

In order to model a humanoid when in flight, one of the
links is modeled as a floating base (typically the torso) and
numbered as link 1. A fictitious six degree-of-freedom (DoF)
joint is inserted between the floating base and fixed base. In
this case, �1 = 16×6 where 16×6 is the identity matrix. The
Denavit–Hartenberg convention is used for single DoF joints,
such that �i = [0 0 1 0 0 0]T for a revolute joint. The total
number of degrees of freedom in the humanoid is n where
n = ∑

ni . Note that n includes the six degrees of freedom
for the floating base.

The spatial transform iXp(i) may be composed from the
position vector p(i)pi from the origin of coordinate frame
p(i) to the origin of i , and the 3 × 3 rotation matrix iRp(i)

which transforms 3D vectors from coordinate frame p(i) to
i :

iXp(i) =
[ iRp(i) 0

iRp(i) S(p(i)pi )
T iRp(i)

]
. (2)

The quantity S(p) is the skew-symmetric matrix that satisfies
S(p)ω = p × ω for any 3D vector ω.

3.1 Spatial momentum

The spatial momentum of each link may be computed from
the spatial velocity as follows (see Fig. 3):

hi =
[

ki

li

]
= Ii vi , (3)

where ki is the angular momentum, li is the linear momen-
tum, and Ii is the spatial inertia for link i . The spatial inertia
may be composed from the mass mi , position vector ci to the
CoM of link i , and 3 × 3 rotational inertia Īi , all relative to
coordinate frame i :

Ii =
[

Īi mi S(ci )

mi S(ci )
T mi 1

]
, (4)

where

Īi = Īcm
i + mi S(ci ) S(ci )

T , (5)
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Fig. 3 Schematic depiction of a single rigid body: spatial momentum
contains the angular and linear momenta

and Īcm
i is the rotational inertia about the CoM. Recall that

if the origin of coordinate frame i is chosen at the CoM, the
off-diagonal blocks mi S(ci ) reduce to zero. If, in addition,
the axes of coordinate frame i are oriented along the principal
axes of inertia, Īi becomes a 3 × 3 diagonal matrix and Ii a
6 × 6 diagonal matrix.

3.2 Global notation: system Jacobian and system inertia

It is possible to combine the equations for the velocity or
momentum for all the links into a global set of equations
(Featherstone and Orin 2000). To do so, composite vectors
and matrices are defined, and this was the starting point of the
spatial operator algebra developed by Rodriguez et al. (1991).
Global notation is useful in developing a system Jacobian and
system inertia which leads to an expression for the centroidal
momentum matrix (CMM).

Gathering all of the link velocities and joint velocities
together, the system Jacobian J can be defined to give the
relationship between the two1:

v = J q̇ , (6)

where

v =
[
vT

1 , vT
2 , . . . vT

i , . . . vT
N

]T
(7)

q̇ =
[
q̇T

1 , q̇T
2 , . . . q̇T

i , . . . q̇T
N

]T
. (8)

The elements of the system Jacobian are just the Jacobians
for each of the links:

J =
[
JT

1 , JT
2 , . . . JT

i , . . . JT
N

]T
. (9)

1 The system Jacobian is not to be confused with the manipulator Jaco-
bian in traditional fixed-based manipulators. The system Jacobian is an
extension of the manipulator Jacobian and can contain it as one of its
blocks if the corresponding coordinate frame is located at the task point.

The momenta of all the links in the system may be deter-
mined as the product of the system velocity vector v and the
system inertia I ; gathering all:

h = I v , (10)

where h is the 6N × 1 system momentum vector:

h =
[

hT
1 , hT

2 , . . . hT
i , . . . hT

N

]T
, (11)

and the 6N × 6N system inertia matrix is defined as:

I = diag [I1, I2, . . . Ii , . . . IN ] . (12)

In conclusion to this section, let us note that spatial nota-
tion results in compact equations whose vectors and matri-
ces contain both angular and linear parts. Further, the use of
global notation illuminates the underlying structure of cen-
troidal dynamics as we will see in the next section.

4 Structure and properties of centroidal momentum
matrix (CMM)

The aggregate momentum of a humanoid may be obtained
by summing up all of the angular and linear momenta con-
tributed by the individual link segments. The link momenta
need to be projected to a common reference point and because
of its special properties, the CoM, or centroid, is used for this
purpose. The 6 × 1 centroidal momentum vector hG , which
consists of the linear and centroidal angular momenta of the
robot, is related to its n × 1 joint velocity vector q̇ as:

hG = AG(q) q̇ . (13)

The 6 × n matrix AG is called the CMM and in this section
we study its structure and properties. In our formulation, AG

contains contributions both from the inter-segmental joint
variables of the robot as well as from the fictitious joint con-
necting the floating base of the humanoid to the inertial frame
(detailed in Sect. 3). Note that AG is identical to the large
matrix in the RHS of Eq. 1 of Kajita et al. (2003), with only
the linear and angular parts interchanged.

The literature contains relatively few references to matri-
ces that map joint rates into aggregate momenta of a multi-
body dynamic system. In Fang and Pollard (2003) the “lin-
ear momentum Jacobian” is obtained as an intermediate step
towards computing what the authors refer to as a force Jaco-
bian. This formulation is used for animating articulated fig-
ures and does not contain angular momentum. In Morita and
Ohnishi (2003) the “angular momentum Jacobian” matrix is
used to control the flight phase of a hopping robot. Finally,
for resolved momentum control of humanoid robots, use has
been made of “matrices which indicate how the joint speeds
affect the linear momentum and angular momentum” (Kajita
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et al. 2003). Although they have been called “inertia matri-
ces” in this work, these matrices are identical to the “momen-
tum Jacobian” matrices mentioned before.

Is AG an inertia matrix or a Jacobian matrix? In the follow-
ing development, we will show that AG can be represented
as the product of a spatial transformation matrix, an inertia
matrix, and a Jacobian matrix. In Sect. 6, we show its relation-
ship to other important quantities including the joint-space
inertia matrix.

As shown in Eq. 13, the CMM gives the relationship
between the joint rates and centroidal momentum. In order to
find the relationship between this matrix and the link inertias
and Jacobians, the concept of the system momentum matrix A
is first presented. The system momentum matrix A expresses
the relationship between the system momentum vector and
the joint rates: h = A q̇. Substituting the expression for the
system velocity in Eq. 6 into Eq. 10, and using the definition
of the system momentum matrix, we can write:

A = I J . (14)

The system momentum matrix is just the product of the sys-
tem inertia matrix and the system Jacobian and is of size
6N × n.

As defined, the spatial momentum of each link hi is most
naturally expressed in its own coordinate system. As a mea-
sure of dynamic stability or for control, it is useful to com-
bine the momenta for the links by projecting the momenta to
a common coordinate frame. A convenient frame is one set
at the instantaneous CoM or the centroid of the system G,
and whose coordinate axes are parallel to those of the iner-
tial coordinate frame 0. Noting that the spatial momentum
may be projected as any other force-type vector (Feather-
stone and Orin 2008), the following equation may be used to
calculate the spatial momentum at the centroid of the system
(see Fig. 4):

hG =
N∑

i=1

iXT
G hi = XT

G h , (15)

where XG is defined as the projection matrix, for motion
vectors, from centroidal coordinates to link coordinates and
is given as follows:

XG = [
1XT

G , 2XT
G , . . . iXT

G , . . . NXT
G

]T
. (16)

The centroidal momentum may also be expressed as a
function of the system momentum matrix A:

hG = XT
G A q̇ . (17)

Noting Eqs. 13 and 17, and using the expression for A in
Eq. 14, the CMM, AG , may then be defined as:

AG = XT
G A = XT

G I J , (18)

Fig. 4 Humanoid robot showing link and centroidal momentum vec-
tors. The inertial frame is located at O and the position vector to the
robot CoM, G, is given by cG . The reference frame of link i is located at
Oi . The centroidal momentum hG can be obtained from either Eqs. 13
or 15

which shows the relationship between AG and the system
inertia and Jacobian. Furthermore, time differentiation of
Eq. 13 results in the following relation which forms the
basis of our momentum-based balance controller presented
in Sect. 9:

ḣG = AG q̈ + ȦG q̇ . (19)

Finally, since f = ḣG (Newton’s equations of motion) where
f is the net external force/moment on the system (Sciavicco
and Siciliano 2005), then it may be noted that AG gives the
relationship between the net external force/moment and the
joint accelerations.

5 “Average spatial velocity” of a humanoid

Note that the average (linear) position of a humanoid, or any
multibody system, is accepted to be the position of its CoM.
Consequently, the average linear velocity is the velocity of
the CoM. However, universally accepted concepts for neither
an average angular position nor an average angular velocity
exist for a multibody system. Essén (1993) defined an average
angular velocity for a system of particles. We will advance
one more step and define an “average spatial velocity” for a
multibody system which includes both the linear and angular
parts. However, unlike the linear velocity of the CoM, it is
generally not possible to integrate the angular velocity to
define an average angular position (Wieber 2005).

To determine an average spatial velocity of the CoM, vG ,
a common vector of link velocities, vc, will be considered
so that all of the links will move as one body; that is, vc =
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XG vG . The average spatial velocity may then be determined
so as to give the same centroidal momentum as the original
system. From Eqs. 10 and 15, the centroidal momentum hG

may be determined as a function of the link velocities:

hG = XT
G I v . (20)

The centroidal momentum can also be determined from the
common set of link velocities and thus vG :

hG = XT
G I vc = XT

G I XG vG . (21)

Let the spatial inertia of the system at its CoM be defined as:

I G = XT
G I XG . (22)

This centroidal inertia is also called the centroidal compos-
ite rigid body inertia (CCRBI) matrix in Lee and Goswami
(2007). Using the definition for the centroidal inertia, Eq. 21
results in:

hG = I G vG . (23)

Finally, the average spatial velocity may be simply computed
from the centroidal inertia and centroidal momentum:

vG = (I G)−1 hG . (24)

In the above development, note that the link velocities in
Eq. 20 are weighted by the link inertias so that the resulting
centroidal velocity is an “inertia-weighted average spatial
velocity”.

The properties of the average spatial velocity may be noted
by first expanding out the centroidal momentum into its angu-
lar and linear parts:

hG =
[

kG

lG

]
= IG vG =

[
ĪG 0
0 M 1

] [
ωG

vG

]
, (25)

where M = ∑
mi , ĪG = ∑ G Īi , and G Īi is the rotational

inertia of the i th link projected to the CoM. Note that the cross
terms, between the angular and linear velocities in the cen-
troidal momentum equation, vanish at the CoM. As expected,
the linear part of the average spatial velocity vG is just the
translational velocity of the CoM while the angular part is
just the rotational velocity of an equivalent single rigid body
with the same centroidal rotational inertia, ĪG .

Equation 25 indicates that the centroidal momentum of
the system may be derived from a single rigid body which
has an equivalent inertia as the system, and is moving with
the system’s average spatial velocity. In order to examine the
properties of the average spatial velocity even further, the
relationship between the kinetic energy and average spatial
velocity will be developed here. The kinetic energy for the
system is given through the following equation:

T = 1

2
vT I v . (26)

Noting in general that

v = vc + v′ = XG vG + v′ , (27)

where v′ is the relative link velocity, an expression for the
kinetic energy may be derived as a function of the average
spatial velocity. Substituting Eq. 27 into 26 gives:

T = 1

2
vT

G XT
G I XG vG + 1

2
(v′)T I XG vG

+ 1

2
vT

G XT
G I v′ + 1

2
(v′)T I v′ . (28)

The middle two terms in this expression may be eliminated
by noting the following from Eqs. 20 and 21

XT
G I (v − vc) = XT

G I v′ = 0 . (29)

That is, the centroidal momentum resulting from relative
motion is zero. Using Eq. 22, the final expression for the
kinetic energy then is:

T = 1

2
vT

G I G vG + 1

2
(v′)T I v′ . (30)

Note the differences in the dimensions of the velocities in this
equation. In particular, the average spatial velocity vector vG

is 6 × 1 while the relative velocity vector v′ is 6N × 1.
Unlike centroidal momentum, and as that goes potential

energy, the kinetic energy in the system cannot be completely
characterized using only centroidal quantities. In particular,
a second term appears in the equation which is related to
the relative motion between the links. However, note that the
kinetic energy is minimum when there is no relative motion;
that is, v′ = 0. The minimum kinetic energy, then, is a direct
function of centroidal quantities, namely the average spatial
velocity and CCRBI.

Some further elaboration on the terms in the above equa-
tion for kinetic energy may be helpful. Noting the expressions
for I G and vG in Eq. 25, the first term in the above equation
gives the rotational and translational kinetic energy for an
equivalent single rigid body. However, the second term in
Eq. 30 is needed in the case of relative motion for a system
of rigid bodies. As an example, if the system included two
equal-size bodies with rotational and translational movement
in opposite directions, then the average spatial velocity would
be zero. However, the net kinetic energy would not be zero,
and the second term correctly accounts for the kinetic energy
due to the relative motion (relative to the average spatial
velocity).

6 Transformation diagram

We have found it useful to pictorially capture the relations
between the CMM and other matrices using what we call the
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Fig. 5 Transformation diagram showing the relations among the veloc-
ities and momenta of a robot. These vector quantities can be expressed
in joint space, system space, or the CoM space of the robot. The matrices
representing the linear transformations between velocities and momenta
in different spaces are also shown in this diagram. The dashed line at the
lower left of the diagram represents a minimum kinetic energy transfor-
mation, which is not a general transformation, as discussed in the text

transformation diagram. As shown in Fig. 5, the transforma-
tion diagram represents the relations among the velocity and
momentum vectors, as well as the associated matrices, within
and across three spaces. The spaces are the n-dimensional
joint space or configuration space, the 6N-dimensional sys-
tem space, and the 6-dimensional CoM space. The joint
space contains the robot’s generalized coordinates, the sys-
tem space hosts the motion components of each rigid body
link of the robot, and the CoM space defines a coordinate
frame located at the robot CoM which is instantaneously ori-
ented identical to the inertial reference frame (Frame 0). The
CoM space is an example of what is more commonly known
as the task space or the operational space (Khatib 1987).

The transformation diagram contains three rows which
correspond, from top to bottom, to the joint space, the system
space and the CoM space, respectively. Each row contains the
velocity and the momentum vectors corresponding to that
space. The mapping between any two vectors, within the
same space or across two different spaces, is given by a matrix
and shown with an arrow.

Three types of transformations, which we call horizon-
tal, vertical and diagonal, are depicted in the transformation
diagram. A horizontal transformation takes place within the
same space (i.e., within the same row) and it maps a velocity
vector to a momentum vector through a square inertia matrix.
Equations 10 and 23 are examples of horizontal transforma-
tion in the system space and the CoM space, respectively.
The mapping from q̇ to hJ , given by

hJ = H q̇ , (31)

is the horizontal transformation within the joint space. The
matrix H is the joint-space inertia matrix, which is well-
known from the standard equations of motion of a robot2. The
generalized momenta hJ , which is also called the canonical
momenta (Naudet 2005), has not been exploited much for
humanoid analysis and control, but has been used in collision
detection (De Luca et al. 2006) and space robotics (Nenchev
et al. 1992).

A vertical transformation is given either by a non-square
Jacobian or a spatial transformation matrix; it relates two
velocity vectors or two momentum vectors, Naturally, a ver-
tical transformation takes place between two different spaces.
The vertical transformations corresponding to Eqs. 6 and 15
are shown, respectively, at the top left and bottom right in
Fig. 5. Finally, a diagonal transformation relates two dis-
similar vectors between two different spaces. The matrices
A and AG , shown, respectively, in Eqs. 14 and 13 fall in this
category.

Using the transformation diagram we can compare and
contrast between H and AG , which was one of our earliest
motivations behind this work. While H is an n × n square
inertia matrix representing a velocity → momentum map-
ping within the joint space, the 6 × n matrix AG maps the
joint space velocity to the CoM space momentum. H and AG

are both related to the matrix A which maps the joint space
velocity to the system space momentum. The former rela-
tionship can be obtained from the transformation diagram:

H = J T A (32)

and the latter is given by Eq. 18.
Figure 5 contains two vertical transformations, at top right

and bottom left, which are given by

hJ = J T h (33)

and

v = vc = XG vG . (34)

Equation 33 can be obtained by equating the expressions
for kinetic energy which are independently derived in the
joint space and the system space. This is possible because
each space represents a complete description of the motion
of the robot.

Equation 34 can be thought of as the collection of all
link velocities, each of the form vc

i = iXG vG . This equation
describes the system moving as a single rigid body with the

2 The equations of motion for an n-dof robot can be expressed as:

τ = H(q) q̈ + C(q, q̇) q̇ + τ g(q) ,

where H is the n × n symmetric, positive-definite joint-space inertia
matrix, C is an n × n matrix such that C q̇ is the vector of Coriolis and
centrifugal terms (collectively known as velocity product terms), and
τ g is the vector of gravity terms.
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CCRBI, I G , and possesses minimum kinetic energy. Because
this is a particular solution satisfying a specific condition, and
not a general solution, we show this transformation with a
dashed line in Fig. 5.

Overall, the transformation diagram pictorially summa-
rizes several of the mathematical relationships between the
quantities developed in this paper.

7 Efficient recursive algorithm

In order to use the CMM in real-time control of a humanoid
robot, it is important to have an efficient algorithm to compute
it. In this section, an efficient recursive algorithm will be
developed for the matrix using spatial notation. The use of
spatial notation results in a particularly compact form for
the algorithm. Further, efficient realization of the 6D spatial
operations is provided in Featherstone and Orin (2008) so that
the computation essentially reduces to 3D implementation of
the angular and linear parts of the matrix.

In addition to efficient computation of the CMM, the
algorithm also computes the centroidal momentum, the cen-
troidal composite rigid body inertia (CCRBI), and average
spatial velocity with little additional computation required.
The main part of the algorithm is the recursive computation
of the CCRBI, and most other quantities are derived from it.
Much of the efficiency of the algorithm results from express-
ing the CCRBI for subtrees of links, in local coordinates.

To develop the algorithm, note that Eq. 13 can be written
in the following form:

hG =
N∑

i=1

(AG)i q̇i , (35)

where (AG)i refers to the i th set of ni columns of AG that
are associated with joint i . That is, the centroidal momen-
tum can be computed by taking the individual joint motion
contributions and summing them.

Each individual joint contribution results when the joint

rate is set as q̇ = [
0 0 . . . q̇T

i . . . 0
]T

. In this case, there is no
motion in the humanoid except at joint i . This separates the
humanoid into two separate composite rigid bodies (CRBs)
connected at joint i , and the dynamics of the humanoid are
much simpler for this case. The spatial velocity of the com-
posite rigid body which is in motion vC

i is:

vC
i = vi = �i q̇i . (36)

Note that vC
i is determined at the origin of the i th coordinate

frame.
The contribution to the centroidal momentum due to

motion at joint i, (hG)i , can be computed from the spatial

momentum of the i th CRB, hC
i , as follows:

(hG)i = iXT
G hC

i . (37)

With the simplified dynamics for a single CRB, hC
i may be

determined from:

hC
i = IC

i vC
i = IC

i �i q̇i , (38)

where IC
i is the spatial inertial for the i th CRB, and may be

computed by combining the spatial inertias for all the links
in the subtree rooted at link i . Substituting hC

i from Eq. 38
into Eq. 37, and noting the similarity of the resulting equation
with Eq. 35, the following expression for (AG)i is developed:

(AG)i = iXT
G IC

i �i . (39)

Equations 35 and 39 provide the basis for the efficient
recursive algorithm for hG and AG given in Table 1. The
algorithm consists of two main recursions. After the algo-
rithm initializes the inertia for the i th CRB, IC

i , the first
recursion follows and is an inward recursion from the leaf
links in the tree to the floating base to compute IC

i . After that
is an outward recursion to compute the spatial transform iXG ,
the components of the CMM, AG , and centroidal momentum
hG .

The equation to compute the spatial inertia for the i th CRB
is given as:

IC
p(i) = IC

p(i) + iXT
p(i) IC

i
iXp(i) . (40)

Using spatial notation, a simple congruence transform using
iXp(i) is all that is needed to transform inertias from one coor-
dinate system to another (Featherstone and Orin 2008). Also,
Eq. 40 is the same equation that is used in the composite-
rigid-body algorithm (CRBA) for computing the joint-space
inertia matrix H in Featherstone and Orin (2008). The CRBA
was first developed by Walker and Orin (1982) and is one of
the most efficient algorithms for computing H .

Note that 0XG is needed in the last recursion for i = 1.
Since the coordinate axes of frames 0 and G are set to be
parallel, and noting the form for X as given in Eq. 2, then

0XG =
[

1 0
S(Gp0)

T 1

]
=

[
1 0

S(0pG) 1

]
. (41)

The vector 0pG is just the position vector from the reference
frame 0 to the centroid of the system; i.e., 0pG = cG , and
it may be easily derived from IC

0 . Noting the form for the
spatial inertia given in Eq. 4, the CCRBI IC

0 is given as:

IC
0 =

[
ĪC

0 M S(cG)

MS(cG)T M 1

]
. (42)

In fact, in the efficient 3D realization of the 6D spatial
operations (Featherstone and Orin 2008) for the algorithm,
M, (M cG), and ĪC

0 are stored in place of IC
0 . So cG may be

easily computed by simply dividing the first moment McG

by the total mass M .
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Table 1 Recursive algorithm for computing the CMM, centroidal
momentum, centroidal composite rigid body inertia (CCRBI), and aver-
age spatial velocity

The computation in the algorithm in Table 1 grows lin-
early with the number of joints so that the complexity is
O(N ). Furthermore, the spatial operations in the table can
be implemented with optimum efficiency using the equiva-
lent 3D operations given in Featherstone and Orin (2008).
Table 2.1 in Featherstone and Orin (2008) provides the 3D
representations for X, I, and other 6D spatial quantities, so
that the following operations in the algorithm are efficiently
implemented: XT IX, X1X2, and XT I�.

Note that the equivalent 3D operations for computing the
CRB inertias are similar to that given by Kajita et al. (2003).
However, considerable savings in computation over that of
Kajita et al. (2003) is provided here by expressing the CRB
inertias in local coordinates. In particular, for a humanoid
with a number of simple revolute joints, the (equivalent 3D)
congruence computation needed in Eq. 40 requires many
fewer arithmetic operations than the case when the inertias,
and thus transforms, are relative to ground-fixed coordinates
(McMillan and Orin 1995). The computation of (AG)i in
Eq. 39 is also much simpler for the case of a revolute joint
since �i = [0 0 1 0 0 0]T when expressed in local coordi-
nates.

The computation time for calculating the CMM, cen-
troidal momentum, CCRBI, and average spatial velocity has
been tested on an HP Intel Dual Core (2.8 GHz) PC with
3 Gbytes of RAM. For a humanoid model with N = 21
links and n = 26 degrees of freedom (including the 6 DOFs
of the floating base), the PC was able to compute the cen-
troidal dynamics according to the algorithm in Table 1 at a
rate of 3.0 KHz. This is comparable to an inverse dynamics
algorithm based on the recursive Newton-Euler Algorithm
(Bin Hammam et al. 2010; Featherstone and Orin 2008)

which ran at 3.6 KHz. This demonstrates the feasibility of
using centroidal dynamics for real-time control.

8 Constraints for single or double support

With the humanoid in single or double support, there are con-
straints imposed on the joint velocities, including the spatial
velocity of the floating base link (typically the torso). In this
section, the constrained CMM, Ac

G , is derived for the con-
strained system.

The constraints on the velocities can be expressed in the
form of a linear equation (Featherstone and Orin 2008),

L q̇ = 0 , (43)

where L is an nc × n matrix, n is the number of degrees of
freedom in the unconstrained system, and nc is the number
of constraints. Note that the right side of the equation may,
for instance, represent the zero velocity of a foot relative to
the ground. However, if the relative velocity at the constraint
is nonzero, this can easily be incorporated into the develop-
ment.

To proceed, extract m linearly independent rows from L,
where m = rank(L), and partition the joint velocities into
n − m primary variables, q̇P and m secondary variables, q̇S :

q̇ = Q
[

q̇S

q̇P

]
, (44)

where Q is an n × n permutation matrix. Equation 43 may
be written in terms of these variables:

[LS LP ]

[
q̇S

q̇P

]
= 0 , (45)

or

LS q̇S + LP q̇P = 0 , (46)

where LS is an m × m matrix formed by extracting m inde-
pendent rows and columns from L and LP is m × (n − m).
Efficient procedures for choosing the primary variables (gen-
eralized coordinates) and secondary variables and associ-
ated constraint matrices are given in Nakamura and Yamane
(2000). Since LS is always invertible, the secondary joint
velocities may be expressed in terms of the primary veloci-
ties as:

q̇S = −L−1
S LP q̇P . (47)

Using Eqs. 13 and 44, the centroidal momentum may be
expressed as a function of the primary and secondary joint
velocity variables:

hG = AG q̇ = AG Q
[

q̇S

q̇P

]
= AGS q̇S + AG P q̇P , (48)
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where AGS and AG P are 6 × m and 6 × (n − m)

matrices, respectively, that are formed from the columns
of AG . Substituting q̇S from Eq. 47 into this equation
gives:

hG =
(

AG P − AGS L−1
S LP

)
q̇P = Ac

G q̇P , (49)

which gives an expression for Ac
G :

Ac
G = AG P − AGS L−1

S LP . (50)

As an example, consider the case where the velocity of
the kth foot vF,k for a 6 degree-of-freedom leg is zero (single
support):

vF,k = JF,k q̇ = 0 , (51)

where JF,k is the Jacobian for the foot. If the secondary joint
velocities are chosen as the kth leg joint velocities, then

q̇S =

⎡
⎢⎢⎢⎣

q̇ j,k

q̇ j+1,k
...

q̇ j+5,k

⎤
⎥⎥⎥⎦ , (52)

where q̇ j,k is the velocity of the first degree of freedom (DoF)
of leg k. The primary and secondary parts of the constraint
matrix L are then given as:

LP =
[
J1

F,k 0 · · · 0
]

, (53)

and

LS =
[
J j

F,k J j+1
F,k · · · J j+5

F,k

]
, (54)

where J1
F,k is the 6×6 Jacobian matrix giving the contribution

of the spatial velocity of the floating base link (link 1) to the
foot velocity, and J j

F,k is the column of the Jacobian for foot
k which is associated with the first degree of freedom in leg k,
etc. . The column of the Jacobian for joint j may be computed
through the following equation:

J j
F,k = F,kXj � j , (55)

with the computations of the other joints following the same
form. Note that the constraints for double support are devel-
oped in a similar manner. Finally, singularities in the legs are
readily managed through the general algorithms presented
in Nakamura and Yamane (2000) for deriving generalized
coordinates for closed kinematic chains.

9 Example: centroidal momentum for postural balance
control

Equation 13 is useful for computing joint velocities when
the desired centroidal momentum is given. Since postural
balance can be defined in terms of centroidal momentum,

Eq. 13 can be effectively used to design a whole body balance
controller. Thus we developed a postural balance controller
using the CMM as reported in Lee and Goswami (2012).
Here we present a brief description of the balance controller
and apply it to a new example of lateral balance control. This
example highlights the usefulness of the CMM when the
dynamic action of multiple limbs is needed for balance. More
details of the controller can be found in Lee and Goswami
(2012).

As a control policy, we define the desired rate of change of
centroidal momentum ḣG,d such that it realizes the desired
position and velocity of the CoM, cG,d and vG,d , and the
desired centroidal angular momentum kG,d as follows:

ḣG,d =
[

k̇G,d

l̇G,d

]
, (56)

l̇G,d/M = Γ 11 (vG,d − vG) + Γ 12( cG,d − cG) , (57)

k̇G,d = Γ 21 (kG,d − kG) , (58)

where M is the total mass of the robot and Γ i j is a 3 ×
3 diagonal matrix representing feedback gain parameters.
Note that unlike in Eq. 57 we do not have angular orientation
feedback in Eq. 58 because there is no special orientation
corresponding to angular momentum.

The desired momentum rate change can only be realized
by controlling the net external force and moment. How-
ever, due to the unilateral contact constraint between the
humanoid robot and the ground, a limitation exists on the
range of feasible external forces and moments that can be
generated by the robot, and thus the l̇G,d and k̇G,d com-
puted by Eqs. 57 and 58 may not be physically realizable.
Therefore, for the balance controller we compute the admis-
sible value of the centroidal momentum rate change that
is close to the desired value while physically realizable,
hence dubbed the admissible linear and angular momenta
rate change, denoted by l̇G,a and k̇G,a , respectively. While
there can be many methods to determine l̇G,a and k̇G,a , we
chose to give a higher priority to linear momentum over angu-
lar momentum: we set l̇G,a first to be as close as possible
to l̇G,d and then resolve k̇G,a next such that k̇G,a is physi-
cally realizable given l̇G,a (See Lee and Goswami 2012 for
details.)

Next, we need to compute the joint acceleration vector
q̈ which will realize the admissible momentum rate change.
For this, we determine q̈P , the acceleration of the primary
variables, from the differentiation of Eq. 49 as

Ac
G q̈P = ḣG,a − Ȧc

G q̇P , (59)

where ḣG,a = [ l̇T
G,a, k̇T

G,a ]T . Note that, from Eq. 59,

Ȧc
G q̇P is equivalent to ḣG,a when q̈P is zero. Since q̈S must

satisfy
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Fig. 6 The centroidal momentum-based controller can maintain pos-
tural balance of the humanoid robot under various disturbance forces

q̈S = −L−1
S (L̇P q̇P + L̇S q̇S) when q̈P is zero3, Ȧc

G q̇P is
computed as the rate of change of angular and linear momenta
(ḣ) when q̈P = 0 and q̈S is set as above, given the current
state q and q̇.

For typical humanoid robots, q̈P has a higher dimension
compared to that of ḣ. Consequently, infinitely many solu-
tions of q̈P exist. This allows us to pursue an optimal solution
under some additional objectives.

If we have desired joint accelerations q̈U,d for the upper
body joints qU (⊂ qP ) that are either given from a predefined
motion or are generated in real time to achieve a certain task,
one way to determine q̈P (hence q̈) is to minimize the fol-
lowing objective function:

w||ḣG,a − Ac
G q̈P − Ȧc

G q̇P || + (1 − w)||q̈U,d − q̈U || (60)

where the first term tries to achieve ḣG,a while the second
term tries to follow the desired upper body motion. In our
experiment, q̈U,d is determined so as to maintain the desired
pose as shown in Fig. 6. w controls the weighting between
the two objectives.

We tested the momentum-based balance controller by sim-
ulating a humanoid robot model as seen in Fig. 6. In the sim-
ulation experiment the robot is subjected to a push from the
lateral direction while standing on a narrow support, which is
even slightly narrower than the width the robot’s feet. In this
environment, the robot must rotate its upper body in order
to maintain balance, and our controller based on the CMM
creates such a whole body motion in which the whole body
segments including the trunk and arms are engaged to create

3 For a stationary support foot, q̈S should satisfy the constraint equation
following from the differentiation of Eq. 46, i.e.,

q̈S = −L−1
S (LP q̈P + L̇P q̇P + L̇S q̇S)

= −L−1
S (L̇P q̇P + L̇S q̇S) .

(Note that q̇P and q̇S are given by the system state.)

the necessary admissible momentum rate change ḣG,a . The
top row of Fig. 7 shows a series of snapshots illustrating this
when the robot is subjected to an external push (115 N, 0.1 s)
which is applied at the robot’s CoM in the lateral direction
from the robot’s right side.

The resulting motion of the robot is similar to that of a
human rotating the trunk and the arms in the direction of the
push to maintain balance. Note that the arms of the robot
move in an asymmetric fashion to counteract the destabi-
lizing effect of the disturbance force. The right arm of the
robot (seen at left in the figure) is raised higher, while the
left arm is brought closer to the body. This is reminiscent of
the windmilling effect of the arms, which is commonly seen
in the sagittal plane. The dynamic motion of the arms is not
separately created but is the natural outcome of the use of
the CMM. The final motion is the outcome of a number of
competing requirements such as the CoP motion, the linear
and angular momenta, and the joint angle trajectories. It is
not always possible to explain them through simple intuitive
arguments.

Figure 7a–f show the trajectories of some important phys-
ical quantities which are recorded during this test. The trajec-
tories of the CoM, linear momentum, and angular momen-
tum in Figs 7a–c show that they return to the desired values
rather smoothly after the perturbation. The trajectory of the
average angular velocity of the robot, ωG , given in Eq. 25
is shown in Fig. 7d. Since the rotational inertia of the robot
does not change significantly, the pattern of the ωG trajectory
is similar to that of the angular momentum.

Figure 7e shows the measured foot CoP, which is calcu-
lated using contact force information during the simulation.
The controller controls the linear and angular momenta rate
changes such that the CoP is kept inside the safety margin.
We set the CoP safety margin to be well inside the width of
the support beam.

Figure 7f compares the trajectories of the trunk bend
angles when the arms are locked with respect to the trunk
(dotted line) and when they are independently engaged by
the balance controller (solid line). We can observe that the
robot’s trunk has to bend more (about 10◦ ) to make up for
the fact that the arms cannot move.

The robot successfully survived the perturbation, which
is confirmed from Fig. 7b in which the linear momentum is
seen to return to zero after about 17 s. Additionally, the robot
returns to its original posture due to the effect of the second
term in Eq. 60.

For this simulation we use the following parameters:
Γ 11 = diag{40, 20, 40}/M and Γ 12 = diag{8, 3, 8}/M in
Eq. 57, Γ 21 = diag{20, 20, 20} in Eq. 58. In our experiment,
w can vary between 0 and 0.999 depending on the distance
of the CoP from the perimeter of the base support. The closer
the CoP to the support base perimeter, the higher is the value
of w.
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Fig. 7 The robot is standing on a narrow support. Top row: Given a
lateral push (115 N, 0.1 s) from its right side around 15 s, the postural
balance controller controls both linear and angular momentum, by mov-
ing the whole body. Especially the robot generates necessary angular
momentum by rotating both the trunk and the arms, which is compara-
ble to human’s balance control behavior. a–e Trajectories of important

physical properties of the experiment. f Trajectories of trunk bend angle
when the arms are locked to the trunk (dotted line) and when they can
rotate (solid line). a CoM (lateral direction) b linear momentum (lat-
eral direction) c angular momentum (coronal plane) d average angular
velocity (coronal plane) e left foot CoP (lateral direction) f bend angle

10 Conclusions and future work

In this paper we have derived expressions for the centroidal
momentum of a humanoid robot using spatial notation. We
have studied the structure, properties, and computational
schemes of the CMM, which is a local linear function that
projects the robot joint rates to the centroidal momentum.
We have shown that this matrix is the product of a spa-
tial transformation matrix, an inertia matrix and a Jacobian
matrix.

We also introduced the new concept of “average spatial
velocity” of the humanoid that encompasses both linear and
angular components and results in a novel decomposition
of the kinetic energy. It has a number of interesting proper-
ties that have been identified which should make it useful in
humanoid motion analysis and control.

We have developed the transformation diagram to picto-
rially summarize the relationships between the velocity and
momenta variables of a robot—in the joint space, the CoM
space, as well as in the system space. This diagram is also
helpful in identifying relationships between the transforma-
tion matrices.

We have also developed very efficient O(N ) algorithms,
expressed in compact form using spatial notation, for com-
puting the CMM, centroidal momentum, centroidal inertia,
and average spatial velocity. Finally, as a practical use of
centroidal dynamics we described a momentum-based bal-
ance controller that directly employs the CMM. The bal-
ance controller is capable of balancing the robot on non-level
and non-stationary ground, including dissimilar slopes and
velocity requirements on the two feet (Lee and Goswami
2012).
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For a deeper understanding of the momentum properties of
a robot and for practical application, several questions need to
be addressed. The average angular velocity of the humanoid
has been defined here, and an efficient algorithm has been
developed to compute it. As an extension of this work, it may
be useful to explore its use in real-time control. Also, while
servoing on the position of the CoM can be useful, there is no
analogous definition for “average orientation,” and this needs
to be investigated. One possible approach may be to allow
the CoM frame to rotate with the average angular velocity of
the humanoid.

A second future direction may be to apply the centroidal
dynamics concepts, developed in this paper, to a broader
range of mobile robotics systems. Of particular impor-
tance will be the availability of torque-controlled robots, as
opposed to position-controlled robots, so that the dynamics
of these systems can be adequately controlled. In any event,
hopefully the concepts and computational tools developed in
this paper will provide the foundation for a wide range of
systems and applications.

Finally, let us point out that we continue to successfully
apply CMM in different humanoid applications. Wensing and
Orin (2013) report two examples, dynamic kick and dynamic
jump, to show the usefulness of the CMM. In these examples
the control of the system’s centroidal angular momentum
leads to natural-looking emergent whole-body behaviors,
such as arm-swing, that are not specified by the designer. Lee
and Goswami (2012) present several examples of humanoid
control based on the CMM, where the robot can recover from
push and can maintain its balance on a non-stationary plat-
form that can translate and rotate.
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