Underactuated Robots

Optimization methods for Planning and Control: Introduction

Tommaso Belvedere

DIAG Robotics Lab

- controlling robotic systems with traditional techniques can become impractical when we have to deal with
 - complex models
 - constraints
 - complex objectives
- on the other hand, optimization can be a powerful tool to find a solution to such problems
- this methods can be applied underactuated systems with little effort (but intrinsic limits are still present!)

The general problem

 many problems can be framed as the minimization of some function of the state/input trajectory while satisfying proper constraints

 $\begin{cases} \min_{\boldsymbol{u}(t)} \int_0^T \ell(\boldsymbol{x}(t), \boldsymbol{u}(t)) dt + \ell_f(\boldsymbol{x}(T)) \\ \text{subject to:} \\ - \text{ initial condition } \boldsymbol{x}(0), \\ - \text{ the dynamics } \dot{\boldsymbol{x}}(t) = \boldsymbol{f}(\boldsymbol{x}(t), \boldsymbol{u}(t)), \\ - \text{ constraints } \boldsymbol{g}(\boldsymbol{x}(t), \boldsymbol{u}(t)) \leq \boldsymbol{0} \end{cases}$

 this formulation can be adapted and extended to many problems: tracking, planning, minimum time, minimum energy, infinite time...

Example: planning

• starting from an initial state x_0 we want to find a feasible trajectory that reaches the goal x_g in a finite time T

$$\begin{split} & \left(\begin{array}{l} \min \int_0^T \| \boldsymbol{x}(t) - \boldsymbol{x}_g \|^2 + \rho \| \boldsymbol{u}(t) \|^2 dt \\ \text{subject to:} \\ & \boldsymbol{x}(0) = \boldsymbol{x}_0 \\ & \boldsymbol{x}(T) = \boldsymbol{x}_g \\ & \dot{\boldsymbol{x}} = \boldsymbol{f}(\boldsymbol{x}, \boldsymbol{u}) \\ & \boldsymbol{g}(\boldsymbol{x}, \boldsymbol{u}) \leq \boldsymbol{0} \\ \end{split} \right) \quad \text{e.g., input/velocity limits, obstacle avoidance...} \end{split}$$

• we have a state penalty in the cost function to get to the goal faster, if possible

Example: trajectory tracking

• given a desired trajectory $x_d(t)$ and possibly a feedforward input $u_d(t)$, the objective is to make $x \to x_d$ by minimizing the deviation from the trajectory

$$\begin{cases} \min_{\boldsymbol{u}(t)} \int_0^T \|\boldsymbol{x}(t) - \boldsymbol{x}_d(t)\|^2 + \rho \|\boldsymbol{u}(t) - \boldsymbol{u}_d(t)\|^2 dt \\ \text{subject to:} \\ \boldsymbol{x}(0) = \boldsymbol{x}_0 \\ \dot{\boldsymbol{x}} = \boldsymbol{f}(\boldsymbol{x}, \boldsymbol{u}) \\ \boldsymbol{g}(\boldsymbol{x}, \boldsymbol{u}) \leq \boldsymbol{0} \\ e.g., \text{ input/velocity limits, obstacle avoidance...} \end{cases}$$

• we can use constraints to impose a convergence time, bound the error

Example: trajectory tracking (continued)

$$\begin{split} \min_{\boldsymbol{u}(t)} & \int_0^T \|\boldsymbol{x}(t) - \boldsymbol{x}_d(t)\|^2 + \rho \|\boldsymbol{u}(t) - \boldsymbol{u}_d(t)\|^2 dt \\ \text{subject to:} \\ & \boldsymbol{x}(0) = \boldsymbol{x}_0 \\ & \dot{\boldsymbol{x}} = \boldsymbol{f}(\boldsymbol{x}, \boldsymbol{u}) \\ & \boldsymbol{g}(\boldsymbol{x}, \boldsymbol{u}) \leq \boldsymbol{0} \quad \text{e.g., input/velocity limits, obstacle avoidance...} \end{split}$$

- in general, exact tracking can be achieved only if we know $oldsymbol{u}_d(t)$
- we may have an output trajectory y_d with y = h(x) instead of the full state (beware the zero dynamics!)

- the first distinction we can make is between global and local methods, which determines the kind of solution we seek
- global methods search for an optimal control policy u = k(x) (feedback/closed-loop)
 - ideal solution, but often too complex to solve
 - examples: Dynamic Programming, Hamilton-Jacobi-Bellman
- local methods search for a pair of trajectories for input u(t) and state x(t) starting from some x(0) (feedforward/open-loop)
 - usually fall under the umbrella term of trajectory optimization
 - not complete: even if a solution exist, you have no guarantee of finding it
 - examples: Direct Methods, Differential Dynamic Programming, Pontryagin's Minimum Principle

- depending on how the problem is tackled, we can distinguish between direct and indirect methods
- direct methods first transcribe the problem into a general Nonlinear Program (NLP), to be solved with appropriate numerical optimization techniques
- indirect methods are based on optimal control principles like DP,HJB,PMP which provide necessary and/or sufficient conditions for optimality