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Introduction

• controlling robotic systems with traditional techniques can become
impractical when we have to deal with

• complex models

• constraints

• complex objectives

• on the other hand, optimization can be a powerful tool to find a

solution to such problems

• this methods can be applied underactuated systems with little effort

(but intrinsic limits are still present!)
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The general problem

• many problems can be framed as the minimization of some function

of the state/input trajectory while satisfying proper constraints

min
u(t)

∫ T

0
ℓ(x(t),u(t))dt+ ℓf (x(T ))

subject to:

− initial condition x(0),

− the dynamics ẋ(t) = f(x(t),u(t)),

− constraints g(x(t),u(t)) ≤ 0

• this formulation can be adapted and extended to many problems:

tracking, planning, minimum time, minimum energy, infinite time...
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Example: planning

• starting from an initial state x0 we want to find a feasible trajectory

that reaches the goal xg in a finite time T

min
u(t)

∫ T

0
∥x(t)− xg∥2 + ρ∥u(t)∥2dt

subject to:

x(0) = x0

x(T ) = xg

ẋ = f(x,u)

g(x,u) ≤ 0 e.g., input/velocity limits, obstacle avoidance...

• we have a state penalty in the cost function to get to the goal

faster, if possible
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Example: trajectory tracking

• given a desired trajectory xd(t) and possibly a feedforward input

ud(t), the objective is to make x → xd by minimizing the deviation

from the trajectory

min
u(t)

∫ T

0
∥x(t)− xd(t)∥2 + ρ∥u(t)− ud(t)∥2dt

subject to:

x(0) = x0

ẋ = f(x,u)

g(x,u) ≤ 0 e.g., input/velocity limits, obstacle avoidance...

• we can use constraints to impose a convergence time, bound the

error
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Example: trajectory tracking (continued)



min
u(t)

∫ T

0
∥x(t)− xd(t)∥2 + ρ∥u(t)− ud(t)∥2dt

subject to:

x(0) = x0

ẋ = f(x,u)

g(x,u) ≤ 0 e.g., input/velocity limits, obstacle avoidance...

• in general, exact tracking can be achieved only if we know ud(t)

• we may have an output trajectory yd with y = h(x) instead of the

full state (beware the zero dynamics!)
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Local and Global methods

• the first distinction we can make is between global and local

methods, which determines the kind of solution we seek

• global methods search for an optimal control policy u = k(x)

(feedback/closed-loop)

• ideal solution, but often too complex to solve

• examples: Dynamic Programming, Hamilton-Jacobi-Bellman

• local methods search for a pair of trajectories for input u(t) and
state x(t) starting from some x(0) (feedforward/open-loop)

• usually fall under the umbrella term of trajectory optimization

• not complete: even if a solution exist, you have no guarantee of

finding it

• examples: Direct Methods, Differential Dynamic Programming,

Pontryagin’s Minimum Principle

6



Direct vs Indirect methods

• depending on how the problem is tackled, we can distinguish

between direct and indirect methods

• direct methods first transcribe the problem into a general Nonlinear

Program (NLP), to be solved with appropriate numerical

optimization techniques

• indirect methods are based on optimal control principles like

DP,HJB,PMP which provide necessary and/or sufficient conditions

for optimality
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